

Turing Machines
Part Three

Outline for Today

● Recap from Last Time
● Where are we, again?

● Why Languages and Strings?
● We’ve been using languages to model problems.

Why?

● Universal Machines
● A single computer that can compute anything

computable anywhere.

● Self-Referential Software
● Programs that compute on themselves.

Recap from Last Time

The Church-Turing Thesis claims that

every feasible method of computation
is either equivalent to or weaker than

a Turing machine.

“This is not a theorem – it is a
falsifable scientifc hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams

Regular
Languages CFLs

All Languages

Problems
Solvable by

Any Feasible
Computing

Machine

Regular
Languages CFLs

All Languages

Problems
Solvable by

Turing
Machines

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it returns true on w.

● M rejects a string w if it returns false on w.

● M loops infnitely (or just loops) on a string w if when run on w
it neither returns true nor returns false.

● M does not accept w if it either rejects w or loops on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept

does not reject

halts

● A TM M is called a recognizer for a language L over Σ if the
following statement is true:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

● A language is recognizable when there is a recognizer for it.

Recognizers and Recognizability

Which of these statements are true for all choices of
TM M, string w, and language L?

(1) If M recognizes L and M rejects w, then w ∉ L.
(2) If M recognizes L and w ∉ L, then M rejects w.

(3) If M loops on w and w ∈ L, then M does not recognize L.
(4) If M loops on w and w ∈ L, then L is not recognizable.

Which of these statements are true for all choices of
TM M, string w, and language L?

(1) If M recognizes L and M rejects w, then w ∉ L.
(2) If M recognizes L and w ∉ L, then M rejects w.

(3) If M loops on w and w ∈ L, then M does not recognize L.
(4) If M loops on w and w ∈ L, then L is not recognizable.

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25

Deciders and Decidability

● A TM M is called a decider for a language L over Σ if the
following statements are true:

∀w ∈ Σ*. M halts on w.

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

● A language is decidable when there is a decider for it.

Which of these statements are true for all choices of
TM M, string w, and language L?

(1) If M decides L and M rejects w, then w ∉ L.
(2) If M decides L and w ∉ L, then M rejects w.
(3) If M loops on w and w ∈ L, then M does not decide L.
(4) If M loops on w and w ∈ L, then L is not decidable.

Which of these statements are true for all choices of
TM M, string w, and language L?

(1) If M decides L and M rejects w, then w ∉ L.
(2) If M decides L and w ∉ L, then M rejects w.
(3) If M loops on w and w ∈ L, then M does not decide L.
(4) If M loops on w and w ∈ L, then L is not decidable.

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25

R and RE Languages

● The class R consists of all decidable
languages.

● The class RE consists of all recognizable
languages.

● By defnition, we know R ⊆ RE.
● Key Question: Does R = RE?

New Stuf!

Strings, Languages, and Encodings

What problems can we solve with a computer?

What is a
“computer?”

What problems can we solve with a computer?

What does
“solve”
mean?

What problems can we solve with a computer?

What is a
“problem?”

Decision Problems

● A decision problem is a problem with a
yes-or-no answer.

● For example:
● “Given integers x, y, and z, is x + y = z?” is a

decision problem.
● “Given integers x and y, what is x + y?” is

not a decision problem.

● DFAs, NFAs, and TMs solve decision
problems: they get an input and produce
a yes/no output.

A Model for Solving Problems

Yep

Nah

Computational
Device

input

A Model for Solving Problems

Yes

Nah

Computational
Device

input

Yep

A Model for Solving Problems

Yep

No

Computational
Device

input

Nah

A Model for Solving Problems

Yep

Nah

Computational
Device

input

A Model for Solving Problems

Yep

Nah

Turing Machine
input

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool someFunctionName(string input) {

 // … do something …

}

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool isAnBn(string input) {

 // … do something …

}

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool isPalindrome(string input) {

 // … do something …

}

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool isBipartite(Graph G) {

 // … do something …

}
How does this

match our model?

How does this
match our model?

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool containsCat(Picture P) {

 // … do something …

}
How does this

match our model?

How does this
match our model?

Humbling Thought:
Everything on your computer is a

string over {0, 1}.

Strings and Objects

● Think about how
my computer
encodes the image
on the right.

● Internally, it's just
a series of zeros
and ones sitting on
my hard drive.

Strings and Objects

● A diferent
sequence of 0s and
1s gives rise to the
image on the right.

● Every image can
be encoded as a
sequence of 0s and
1s, though not all
sequences of 0s
and 1s correspond
to images.

Object Encodings

● If Obj is some mathematical object that is discrete and
fnite, then we’ll use the notation ⟨Obj⟩ to refer to
some way of encoding that object as a string.

● Think of ⟨Obj⟩ like a fle on disk – it encodes some high-
level object as a series of characters.

Key idea: If you want to have a TM compute
something about Obj, you can provide the string ⟨Obj⟩
as input to that Turing machine.

A few remarks about encodings:

We don't care how we encode the object, just that we
can.

The particular choice of alphabet isn't important. Given
any alphabet, we can always fnd a way of encoding
things.

We'll assume we can perform “reasonable” operations on
encoded objects.

⟨ ⟩ = 110111001011…110

Object Encodings

● If Obj is some mathematical object that is discrete and
fnite, then we’ll use the notation ⟨Obj⟩ to refer to
some way of encoding that object as a string.

● Think of ⟨Obj⟩ like a fle on disk – it encodes some high-
level object as a series of characters.

Key idea: If you want to have a TM compute
something about Obj, you can provide the string ⟨Obj⟩
as input to that Turing machine.

A few remarks about encodings:

We don't care how we encode the object, just that we
can.

The particular choice of alphabet isn't important. Given
any alphabet, we can always fnd a way of encoding
things.

We'll assume we can perform “reasonable” operations on
encoded objects.

⟨ ⟩ = 001101010001…001

Object Encodings

● For the purposes of what we’re going to be doing, we
aren’t going to worry about exactly how objects are
encoded.

● For example, we can say ⟨137⟩ to mean “some
encoding of 137” without worrying about how it’s
encoded.

● Analogy: do you need to know how numbers are
represented in Python to be a Python programmer?
That’s more of a CS107 question.

● We’ll assume, whenever we’re dealing with encodings,
that some Smart, Attractive, Witty person has fgured
out an encoding system for us and that we’re using
that encoding system.

Object Encodings

● Object encodings let us defne languages
like these:
● { ⟨n⟩ | n ∈ ℕ and n is even }
● { ⟨n⟩ | n ∈ ℕ and the Hailstone sequence

 terminates for n }
● { ⟨G⟩ | G is a graph and G is bipartite }

● We can focus more on what property of
an object we’re checking for rather than
how the object is represented as a string.

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool containsCat(Picture P) {

 // … do something …

}

Internally, this is
a sequence of
0s and 1s.

Internally, this is
a sequence of
0s and 1s.

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool containsCat(Picture P) {

 // … do something …

}

Internally, this is
a sequence of
0s and 1s.

Internally, this is
a sequence of
0s and 1s.

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool containsCat(Picture P) {

 // … do something …

}

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool isBipartite(Graph G) {

 // … do something …

}

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool isVertexCover(Graph G, Set C) {

 // … do something …

}
How does this

match our model?

How does this
match our model?

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool matchesRegex(string w, Regex R) {

 // … do something …

}
How does this

match our model?

How does this
match our model?

Encoding Groups of Objects

● Given a group of objects Obj₁, Obj₂, …, Objₙ, we
can create a single string encoding all these
objects.
● Intuition 1: Think of it like a .zip fle, but

without the compression.
● Intuition 2: Think of it like a tuple or struct.

● We'll denote the encoding of all of these
objects as a single string by ⟨Obj₁, …, Objₙ⟩.

Encoding Groups of Objects

● We can now talk about languages like
these:
● { ⟨R, w⟩ | R is a regex and R matches w }
● { ⟨G, s, t⟩ | G is a graph, s and t are nodes

 in G, and there’s a path from s
 to t }

● Our languages are starting to look a lot
more like problems in the traditional
sense than sets of strings.

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
multiple
distinct
values)

(accept)

(reject)

bool matchesRegex(string w, Regex R) {

 // … do something …

}
These form one
large bitstring.

These form one
large bitstring.

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
multiple
distinct
values)

(accept)

(reject)

bool matchesRegex(string w, Regex R) {

 // … do something …

}
These form one
large bitstring.

These form one
large bitstring.

What problems can we solve with a computer?

Emergent Properties

Emergent Properties

● An emergent property of a system is a property
that arises out of smaller pieces that doesn't seem
to exist in any of the individual pieces.

● Examples:
● Individual neurons work by fring in response to

particular combinations of inputs. Somehow, this
leads to consciousness, love, and ennui.

● Individual atoms obey the laws of quantum
mechanics and just interact with other atoms.
Somehow, it's possible to combine them together to
make iPhones and pumpkin pie.

● If this defnition seems fuzzy, it’s because it is. �

Emergent Properties

● Computational devices (TMs and other equivalent devices)
have two surprising emergent properties:

● Universality: There is a single computing device capable of
performing any computation.

● Self-Reference: Computing devices can ask questions about
their own behavior.

● These properties are common to all suficiently powerful
computing devices. Computing can’t exist without them.

● These properties are interesting in their own rights – and
are the theoretical basis for much of modern computing.

● They also are an “Achilles’ heel” of computational devices,
and we’ll use them to fnd concrete examples of problems
computers can’t solve.

Emergent Properties

Computational devices (TMs and other equivalent devices)
have two surprising emergent properties:

● Universality: There is a single computing device capable of
performing any computation.

Self-Reference: Computing devices can ask questions about
their own behavior.

These properties are, in a sense, inherent to all computing
devices. Computing can’t exist without them.

These properties are interesting in their own rights – and
are the theoretical basis for much of modern computing.

They also are an “Achilles’ heel” of computational devices,
and we’ll use them to fnd concrete examples of problems
computers can’t solve.

Universal Machines

An Observation

● Think about how you interact with your physical
computer.

● You have a single, physical computer.
● That computer then runs multiple programs.

● Contrast that with how we’ve worked with TMs.
● We have a TM for { anbn | n ∈ ℕ }. That TM will

always perform that calculation and never do
anything else.

● We have a TM for the hailstone sequence. That TM
can’t compose poetry, write music, etc.

● How do we reconcile this diference?

Can we make a “reprogrammable
Turing machine”?

A TM Simulator

● It is possible to program a TM simulator on an unbounded-
memory computer.
● You’ve seen this in class, and you’ll use one on PS8.

● We could imagine it as a method

 bool simulateTM(TM M, string w)

with the following behavior:
● If M accepts w, then simulateTM(M, w) returns true.
● If M rejects w, then simulateTM(M, w) returns false.

● If M loops on w, then simulateTM(M, w) loops infnitely.

true!

false!

simulateTM

(loop)

...input...w

M

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

A TM Simulator

● Anything that can be done with an
unbounded-memory computer can be done
with a TM.

simulateTM

true!

false!

(loop)

...input...

M

w

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

A TM Simulator

● So there must be some TM that has the
behavior of . simulateTM

simulateTM

true!

false!

(loop)

...input...

M

w

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

● Anything that can be done with an
unbounded-memory computer can be done
with a TM.

A TM Simulator

● What would that TM do?

simulateTM

true!

false!

(loop)

...input...

M

w

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

● So there must be some TM that has the
behavior of . simulateTM

● Anything that can be done with an
unbounded-memory computer can be done
with a TM.

 Tern:
 If Blank Goto Heron
 Write 'q'
 Move Right
 …

A TM Simulator

accept!

reject!

(loop)

...input...

M

w
TM that runs

other TMs

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

● What would that TM do?

● So there must be some TM that has the
behavior of . simulateTM

● Anything that can be done with an
unbounded-memory computer can be done
with a TM.

 Tern:
 If Blank Goto Heron
 Write 'q'
 Move Right
 …

A TM Simulator

...input...

M

w Universal TM

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

accept!

reject!

(loop)

● What would that TM do?

● So there must be some TM that has the
behavior of . simulateTM

● Anything that can be done with an
unbounded-memory computer can be done
with a TM.

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT called the
universal Turing machine that, when run on an input of the form
⟨M, w⟩, where M is a Turing machine and w is a string, simulates M
running on w and does whatever M does on w (accepts, rejects, or loops).

● The observable behavior of UTM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

 Tern:
 If Blank Goto Heron
 Write 'q'
 Move Right
 …

TM

...input...

M

w Universal TM

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

accept!

reject!

(loop)

UTM does to ⟨M, w⟩

what

M does to w.

UTM does to ⟨M, w⟩

what

M does to w.

The Universal Turing Machine

● Intuition: Modern computers – laptops,
phones, network routers, etc. – are universal
Turing machines.
● Each computer is a single piece of hardware.

With rare exceptions, we don’t make specifc
changes to the hardware after we purchase the
computer.

● We load programs into those computers, and
those computers then execute the commands in
those programs.

● Turing came up with this idea in 1936 – before
any programmable computers had been built!

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM marks where in the simulated TM’s tape the simulated
TM’s tape head is, perhaps by having a special symbol
indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b b a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b x a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b x a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b x a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b x a …

The Universal Turing Machine

● Building out UTM is nontrivial, but the conceptual idea
behind it isn’t too bad.

● Essentially:

● UTM splits its tape into two regions: one spot holding the source
code of the TM to simulate, and one holding the tape contents
for that TM.

● UTM somehow marks where in the simulated TM’s tape the
simulated TM’s tape head is, perhaps by having a special
symbol indicating “tape head here.”

● UTM repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts
or rejects.

… W r i t e ' x ' … a b x a …

The Universal Turing Machine

● Amazing Thought: UTM is the most powerful
computational device that can be built.

● Assuming the Church-Turing thesis, any
computation that can be performed by any
computing system can be performed by a TM.

● The universal TM can “run” any TM, so it can
perform any computation any TM can perform.

● So UTM can do any computation that could ever
be done by any possible feasible computing
system. (Wow!)

● And yet – it’s just a simulator! All it does is
simulate one step of a TM after another.

UTM as a Recognizer

● UTM, when run on a string ⟨M, w⟩, where M is a
TM and w is a string, will

… accept ⟨M, w⟩ if M accepts w,

… reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.

● Although we didn’t design UTM as a recognizer, it
does recognize some language.

● Which language is that?

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25

UTM as a Recognizer

● UTM, when run on a string ⟨M, w⟩, where M is a
TM and w is a string, will

… accept ⟨M, w⟩ if M accepts w,

… reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.

● Let’s let ATM be the language recognized by the
universal TM UTM. This means that

∀x ∈ Σ*. (UTM accepts x ↔ x ∈ ATM)

UTM as a Recognizer

● UTM, when run on a string ⟨M, w⟩, where M is a
TM and w is a string, will

… accept ⟨M, w⟩ if M accepts w,

… reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.

● Let’s let ATM be the language recognized by the
universal TM UTM. This means that

∀M. ∀w ∈ Σ*. (UTM accepts ⟨M, w⟩ ↔ ⟨M, w⟩ ∈ ATM)

UTM as a Recognizer

● UTM, when run on a string ⟨M, w⟩, where M is a
TM and w is a string, will

… accept ⟨M, w⟩ if M accepts w,

… reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.

● Let’s let ATM be the language recognized by the
universal TM UTM. This means that

∀M. ∀w ∈ Σ*. (M accepts w ↔ ⟨M, w⟩ ∈ ATM)

● So we have

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }

The Language ATM

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }

● Here’s a complicated expression. Can you simplify
it?

⟨UTM, ⟨N, x⟩⟩ ∈ ATM.

● Given the defnition of ATM and UTM, the following
statements are all equivalent to one another.

● M accepts w.
● UTM accepts ⟨M, w⟩.
● ⟨M, w⟩ ∈ ATM.

Regular
Languages CFLs

All Languages

RE

A
TM

Uh… so what?

Reason 1: It has practical consequences.

Why Does This Matter?

● The existence of a universal Turing machine has both
theoretical and practical signifcance.

● For a practical example, let's review this diagram from
before.

● Previously we replaced the computer with a TM. (This
gave us the universal TM.)

● What happens if we replace the TM with a computer
program?

true!

false!

simulateTM

(loop)

M

...input...w

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

Why Does This Matter?

● The existence of a universal Turing machine has both
theoretical and practical signifcance.

● For a practical example, let's review this diagram from
before.

● Previously we replaced the computer with a TM. (This
gave us the universal TM.)

● What happens if we replace the TM with a computer
program?

true!

false!

simulateProgram

(loop)

...input...w

for (int i = 2;
 i < n; i++) {
 if (n % i == 0)
 …
}

code

true!

false!

simulateProgram

(loop)

...input...w

for (int i = 2;
 i < n; i++) {
 if (n % i == 0)
 …
}

code

● We now have a computer program that runs other computer
programs!

● An interpreter is a program that simulates other programs. Python
programs are usually executed by interpreters. Your web browser
interprets JavaScript code when it visits websites.

● A virtual machine is a program that simulates an entire operating
system. Virtual machines are used in computer security, cloud
computing, and even by individual end users.

● It’s not a coincidence that this is possible – Turing’s 1936 paper
says that any general-purpose computing system must be able to
do this!

Why Does This Matter?

Reason 2: It’s philosophically interesting.

Can Computers Think?

● On May 15, 1951, Alan Turing delivered
a radio lecture on the BBC on the topic of
whether computers can think.

● He had the following to say about whether a
computer can be thought of as an electric
brain...

https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-5

“In fact I think [computers] could be used in such a manner that they could be
appropriately described as brains. I should also say that

‘If any machine can be appropriately described as a brain,
then any digital computer can be so described.’

This last statement needs some explanation. It may appear rather startling,
but with some reservations it appears to be an inescapable fact.

It can be shown to follow from a characteristic property of digital computers,
which I will call their universality. A digital computer is a universal machine
in the sense that it can be made to replace any machine of a certain very wide
class. It will not replace a bulldozer or a steam-engine or a telescope, but it
will replace any rival design of calculating machine, that is to say any
machine into which one can feed data and which will later print out results. In
order to arrange for our computer to imitate a given machine it is only
necessary to programme the computer to calculate what the machine in
question would do under given circumstances, and in particular what answers
it would print out. The computer can then be made to print out the same
answers.

If now some machine can be described as a brain we have only to programme
our digital computer to imitate it and it will also be a brain.”

Self-Referential Software

Quines

● A Quine is a program that, when run, prints its
own source code.

● Quines aren't allowed to just read the fle
containing their source code and print it out;
that's cheating (and technically incorrect if
someone changes that fle!)

● How would you write such a program?

Writing a Quine

Self-Referential Programs

● The fact that we can write Quines is not a
coincidence.

Theorem: It is possible to construct
TMs that perform arbitrary computations on

their own source code.
● In other words, any computing system that’s

equal to a Turing machine possesses some
mechanism for self-reference!

● Want to see how deep the rabbit hole goes?
Take CS154!

Self-Referential Programs

● Claim: Going forward, assume that any function
has the ability to get access to its own source code.

● This means we can write programs like the ones
shown here:

bool narcissist(string input) {
 string me = /* source code of narcissist */;

 return input == me;
}

bool acceptLongerStrings(string input) {
 string me = /* source code of acceptLongerStrings */;

 return input.length() > me.length();
}

bool narcissist(string input) {
 string me = /* source code of narcissist */;

 return input == me;
}

bool acceptLongerStrings(string input) {
 string me = /* source code of acceptLongerStrings */;

 return input.length() > me.length();
}

Next Time

● Self-Defeating Objects
● Objects “too powerful” to exist.

● Undecidable Problems
● Problems truly beyond the limits of

algorithmic problem-solving!

● Consequences of Undecidability
● Why does any of this matter outside of

Theoryland?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102

